

DPF

Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/46				
video Solution on YouTube:-		https://youtu.be/veQ1_ryXN94				
Vritten Solution on Website:-		https://physicsaholics.com/note/notesDetalis/19				
Q 1.	(a) Temperature of ta(b) Intensity of elect(c) K.E. of electrons	K - rays decreases, when arget is increased ron beam is increased striking the target is increased striking the target is decreased				
Q 2.		length of X-rays produced in an X-ray tube is λ when the V. What is the minimum wavelength of the X-rays when the V/2?				
Q 3.	X-rays are being proproduced in vacuum (a) 3×10^8 m/s (c) 3.1×10^8 m/s	oduced in a tube operating at 10^5 V. The velocity of X-rays tube is (b) 2.8×10^8 m/s (d) 3×10^{10} m/s				
Q 4.	The X-rays produced wavelength of (a) 3.09×10^{-8} m (c) 4.09×10^{-8} m	d in a Coolidge tube of potential difference 40 V have minimum (b) $5.09 \times 10^8 \text{m}$ (d) $1.09 \times 10^8 \text{m}$				
Q 5.	A metal block is exp wavelength penetrate (a) 2 Å (c) 6 Å	cosed to beams of X-ray of different wavelength. X-rays of which the most (b) 4 Å (d) 8 Å				
Q.6	emitted from the targ					
Q 7.	Which of the follows (a) 10000 Å (c) 1 Å	ing wavelength falls in X - ray region? (b) 1000 Å (d) 10^{-2} Å				

hysicsaholics

- In X-ray tube, when the accelerating voltage V is doubled, the difference between Q 8. the wavelength of K_{α} line and minimum wavelength of continuous X-ray spectrum
 - (a) Remains constant
- (b) becomes half
- (c) Becomes more than two times
- (d) Becomes less than two times
- Q 9. Mosley measured the frequency (f) of the characteristic X-ray from many metals of different atomic number (Z) and represented his results by a relation known as Moseley's law. This law is (a, b are constant)
 - (a) $f = a(Z b)^2$

(c) $f^2 = a(Z - b)$

- (b) $Z = a(f b)^2$ (d) $f = a(Z b)^{1/2}$
- Q 10. If the frequency of K_{α} X-rays emitted from the element with atomic number 31 is v, then the frequency of K_{α} X-rays emitted from the element with atomic number 51 would be
 - (a) $\frac{3}{5}$ v

 $(c)^{\frac{5}{25}}v$

- (b) $\frac{51}{31}$ v (d) $\frac{9}{25}$ v
- Q 11. The X-ray wavelength of L_{α} line of Platinum (Z=78) is 1.30 Å. The X-ray wavelength of L_{α} line of Molybdenum (Z = 42) is (constant b = 7.4)
 - (a) 5.41 Å

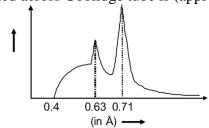
(b) 4.20 Å

(c) 2.70 Å

- (d) 1.35 Å
- Q 12. An X-ray tube operates at 40 kV. Suppose the electron converts 70% of its energy into a photon at each collision. Find the 2nd lowest wavelengths emitted from the tube. Neglect the energy imparted to the atom with which the electron collides
 - (a) 44.28 pm

(b) 147.61 pm

(c) 493 pm


- (d) 122.43 pm
- Q 13. The wavelength of ka X-rays produced by an X rays tube is 0.76Å. The atomic number of the anode material of the tube is
 - (Considering that Bohr's model is applicable)
 - (a) 57

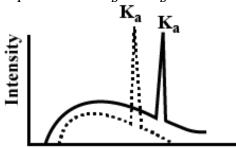
(b) 39

(c) 34

- (d) 41
- Q 14. Figure shows intensity versus wavelength graph of X-rays coming from Coolidgetube with molybdenum as target element. The two peaks shown in graph correspond to K_{α} and K_{β} X-rays.

Wavelength of L_{α} X- rays from Coolidge tube will be (approximately) and Voltage applied across Coolidge tube is (approximately)

hysicsaholics


(a) 1.2 Å, 20 kV

(b) 2100 Å, 16 kV

(c) 5.6 Å, 31 kV

(d) 12.3 Å, 18 kV

Q 15. Given curve shows the intensity wavelength relation of X-rays coming from two different Coolidge tubes A and B. The dark curve represents the relation for the tube A in which potential difference between the target and the filament is V_A and the atomic number of the target material is Z_A . Similarly dotted curve is for tube B. Respective quantities are V_B and Z_B for the tube B. Then

Wavelength

(a)
$$V_A > V_B, Z_A > Z_B$$

(b)
$$V_A > V_B$$
, $Z_A < Z_B$

(b)
$$V_A > V_B$$
, $Z_A < Z_B$
(c) $V_A < V_B$, $Z_A > Z_B$
(d) $V_A < V_B$, $Z_A < Z_B$

$$(d) V_A < V_B, Z_A < Z_B$$

Answer Key

Q.1 c	Q.2 c	Q.3 a	Q.4 a	Q.5 a
Q.6 a	Q.7 c	Q.8 d	Q.9 a	Q.10 c
Q.11 a	Q.12 b	Q.13 d	Q.14 c	Q.15 b